GupShup Study
 
  
MECHANICAL VIBRATION pdf Lecture notes and eBook Dowload
Ravi Chopra

MECHANICAL VIBRATION pdf Lecture notes and eBook Dowload

Ravi Chopra | 24-Feb-2016 |
MODELLINGANDANALYSIS , MECHANICAL VIBRATION OF ONE-DEGREE-OF-FREEDOM LINEAR SYSTEMS , MECHANICAL VIBRATION OF MULTI-DEGREE-OF-FREEDOM LINEAR SYSTEMS , VIBRATION OF CONTINUOUS SYSTEMS , EXPERIMENTAL INVESTIGATION , MODAL ANALYSIS OF A SYSTEMWITH 3 DEGREES OF FREEDOM ,

Hi friends, here Ravi Chopra uploaded notes for MECHANICAL VIBRATIONS with title MECHANICAL VIBRATION pdf Lecture notes and eBook Dowload. You can download this lecture notes, ebook by clicking on the below file name or icon.

CONTENTS
0.1 INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
I MODELLINGANDANALYSIS 7
1 MECHANICAL VIBRATION OF ONE-DEGREE-OF-FREEDOM
LINEAR SYSTEMS 9
1.1 MODELLING OF ONE-DEGREE-OF-FREEDOM SYSTEM . . . . 9
1.1.1 Physical model . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1.2 Mathematical model . . . . . . . . . . . . . . . . . . . . . 12
1.1.3 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.2 ANALYSISOFONE-DEGREE-OF-FREEDOMSYSTEM . . . . . . 28
1.2.1 Free vibration . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.2.2 Forced vibration . . . . . . . . . . . . . . . . . . . . . . . . 34
1.2.3 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2 MECHANICAL VIBRATION OFMULTI-DEGREE-OF-FREEDOM
LINEAR SYSTEMS 66
2.1 MODELLING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.1.1 Physical model . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.1.2 Mathematical model . . . . . . . . . . . . . . . . . . . . . 67
2.1.3 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
2.2 ANALYSISOFMULTI-DEGREE-OF-FREEDOMSYSTEM. . . . . 93
2.2.1 General case . . . . . . . . . . . . . . . . . . . . . . . . . . 93
2.2.2 Modal analysis - case of small damping . . . . . . . . . . 102
2.2.3 Kinetic and potential energy functions - Dissipation
function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
2.2.4 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
2.3 ENGINEERINGAPPLICATIONS . . . . . . . . . . . . . . . . . . . 151
2.3.1 Balancing of rotors . . . . . . . . . . . . . . . . . . . . . . 151
2.3.2 Dynamic absorber of vibrations . . . . . . . . . . . . . . 157
3 VIBRATION OF CONTINUOUS SYSTEMS 162
3.1 MODELLINGOF CONTINUOUS SYSTEMS . . . . . . . . . . . . . 162
3.1.1 Modelling of strings, rods and shafts . . . . . . . . . . . 162
3.1.2 Modelling of beams . . . . . . . . . . . . . . . . . . . . . . 166
3.2 ANALYSISOF CONTINUOUS SYSTEMS . . . . . . . . . . . . . . 168
3.2.1 Free vibration of strings, rods and shafts . . . . . . . . . 168
3.2.2 Free vibrations of beams . . . . . . . . . . . . . . . . . . . 174
3.2.3 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
3.3 DISCRETEMODELOF THE FREE-FREE BEAMS . . . . . . . . . 214
3.3.1 Rigid Elements Method. . . . . . . . . . . . . . . . . . . . 214
3.3.2 Finite Elements Method. . . . . . . . . . . . . . . . . . . . 217
3.4 BOUNDARYCONDITIONS. . . . . . . . . . . . . . . . . . . . . . . 225
3.5 CONDENSATIONOF THEDISCREET SYSTEMS . . . . . . . . . 226
3.5.1 Condensation of the inertia matrix. . . . . . . . . . . . . 227
3.5.2 Condensation of the damping matrix. . . . . . . . . . . . 228
3.5.3 Condensation of the stiffness matrix. . . . . . . . . . . . 228
3.5.4 Condensation of the external forces. . . . . . . . . . . . . 228
3.6 PROBLEMS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
II EXPERIMENTAL INVESTIGATION 237
4 MODAL ANALYSIS OF A SYSTEMWITH 3 DEGREES OF FREEDOM
238
4.1 DESCRIPTIONOF THE LABORATORYINSTALLATION . . . . . 238
4.2 MODELLINGOF THEOBJECT . . . . . . . . . . . . . . . . . . . . 239
4.2.1 Physical model . . . . . . . . . . . . . . . . . . . . . . . . . 239
4.2.2 Mathematical model . . . . . . . . . . . . . . . . . . . . . 240
4.3 ANALYSISOF THEMATHEMATICALMODEL. . . . . . . . . . . 241
4.3.1 Natural frequencies and natural modes of the undamped
system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
4.3.2 Equations ofmotion in terms of the normal coordinates
- transfer functions . . . . . . . . . . . . . . . . . . . . . . 241
4.3.3 Extraction of the natural frequencies and the natural
modes from the transfer functions . . . . . . . . . . . . . 242
4.4 EXPERIMENTAL INVESTIGATION . . . . . . . . . . . . . . . . . 243
4.4.1 Acquiring of the physical model initial parameters . . 243
4.4.2 Measurements of the transfer functions . . . . . . . . . . 244
4.4.3 Identification of the physical model parameters . . . . 245
4.5 WORKSHEET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

 

Download Free MECHANICAL VIBRATION Lecture notes and ebook

    Attachment Lists

    If download doesn't start in application like IDM then press Alt + click on download button to start download
  • Mechanical vibration.pdf (Size: 1613.56KB) Dowland
Share With Friends :  

No any Comment yet!