GupShup Study
 
  
Nanoscale Science and Technology eBook and lecture notes pdf download
Shubham Goyal

Nanoscale Science and Technology eBook and lecture notes pdf download

Shubham Goyal | 15-Mar-2016 |
Nanoscale Science , Generic methodologies for nanotechnology: classification and fabrication , Generic methodologies for nanotechnology: characterization , Inorganic semiconductor nanostructures , Nanomagnetic materials and devices , Processing and properties of inorganic nanomaterials , Electronic and electro-optic molecular materials and devices , Self-assembling nanostructured molecular materials and devices , Macromolecules at interfaces and structured organic films , Bionanotechnology ,

Hi friends, here Shubham Goyal uploaded notes for Nanotechnology with title Nanoscale Science and Technology eBook and lecture notes pdf download. You can download this lecture notes, ebook by clicking on the below file name or icon.

Nanoscale Science and Technology

Contents
List of contributors xii
Preface xiv
Chapter authors xvi
1 Generic methodologies for nanotechnology: classification and fabrication 1
1.1 Introduction and classification 1
1.1.1 What is nanotechnology? 1
1.1.2 Classification of nanostructures 1
1.1.3 Nanoscale architecture 4
1.2 Summary of the electronic properties of atoms and solids 5
1.2.1 The isolated atom 5
1.2.2 Bonding between atoms 8
1.2.3 Giant molecular solids 11
1.2.4 The free electron model and energy bands 12
1.2.5 Crystalline solids 14
1.2.6 Periodicity of crystal lattices 14
1.2.7 Electronic conduction 16
1.3 Effects of the nanometre length scale 19
1.3.1 Changes to the system total energy 20
1.3.2 Changes to the system structure 20
1.3.3 How nanoscale dimensions affect properties 24
1.4 Fabrication methods 32
1.4.1 Top-down processes 32
1.4.2 Bottom-up processes 37
1.4.3 Methods for templating the growth of nanomaterials 49
1.4.4 Ordering of nanosystems 51
1.5 Preparation, safety and storage issues 54
Bibliography 54
2 Generic methodologies for nanotechnology: characterization 56
2.1 General classification of characterization methods 56
2.1.1 Analytical and imaging techniques 57
2.1.2 Some scattering physics 58
2.2 Microscopy techniques 62
2.2.1 General considerations for imaging 64
2.2.2 Image magnification and resolution 65
2.2.3 Other considerations for imaging 67
2.2.4 Light microscopy 68
2.3 Electron microscopy 69
2.3.1 General aspects of electron optics 69
2.3.2 Electron beam generation 70
2.3.3 Electron–specimen interactions 70
2.3.4 Scanning electron microscopy 72
2.3.5 Transmission electron microscopy 76
2.3.6 Scanning transmission electron microscopy 82
2.4 Field ion microscopy 83
2.5 Scanning probe techniques 85
2.5.1 Scanning tunnelling microscopy 85
2.5.2 Atomic force microscopy 87
2.5.3 Other scanning probe techniques 92
2.6 Diffraction techniques 92
2.6.1 Bulk diffraction techniques 92
2.6.2 Surface diffraction techniques 96
2.7 Spectroscopy techniques 97
2.7.1 Photon spectroscopy 98
2.7.2 Radio frequency spectroscopy 105
2.7.3 Electron spectroscopy 108
2.8 Surface analysis and depth profiling 113
2.8.1 Electron spectroscopy of surfaces 114
2.8.2 Mass spectrometry of surfaces 117
2.8.3 Ion beam analysis 119
2.8.4 Reflectometry 120
2.9 Summary of techniques for property measurement 122
2.9.1 Mechanical properties 122
2.9.2 Electron transport properties 124
2.9.3 Magnetic properties 126
2.9.4 Thermal properties 127
Bibliography 128
3 Inorganic semiconductor nanostructures 130
3.1 Introduction 130
3.2 Overview of relevant semiconductor physics 131
3.2.1 What is a semiconductor? 131
3.2.2 Doping 132
3.2.3 The concept of effective mass 133
3.2.4 Carrier transport, mobility and electrical
conductivity 133
3.2.5 Optical properties of semiconductors 134
3.2.6 Excitons 135
3.2.7 The pn junction 136
3.2.8 Phonons 137
3.2.9 Types of semiconductor 137
vi CONTENTS
3.3 Quantum confinement in semiconductor nanostructures 138
3.3.1 Quantum confinement in one dimension: quantum wells 139
3.3.2 Quantum confinement in two dimensions: quantum wires 142
3.3.3 Quantum confinement in three dimensions: quantum dots 142
3.3.4 Superlattices 143
3.3.5 Band offsets 144
3.4 The electronic density of states 144
3.5 Fabrication techniques 145
3.5.1 Requirements for an ideal semiconductor
nanostructure 146
3.5.2 The epitaxial growth of quantum wells 147
3.5.3 Lithography and etching 147
3.5.4 Cleaved-edge overgrowth 147
3.5.5 Growth on vicinal substrates 148
3.5.6 Strain-induced dots and wires 149
3.5.7 Electrostatically induced dots and wires 150
3.5.8 Quantum well width fluctuations 150
3.5.9 Thermally annealed quantum wells 151
3.5.10 Semiconductor nanocrystals 151
3.5.11 Colloidal quantum dots 151
3.5.12 Self-assembly techniques 152
3.5.13 Summary of fabrication techniques 158
3.6 Physical processes in semiconductor nanostructures 158
3.6.1 Modulation doping 158
3.6.2 The quantum Hall effect 161
3.6.3 Resonant tunnelling 162
3.6.4 Charging effects 164
3.6.5 Ballistic carrier transport 166
3.6.6 Interband absorption in semiconductor nanostructures 168
3.6.7 Intraband absorption in semiconductor nanostructures 170
3.6.8 Light emission processes in nanostructures 171
3.6.9 The phonon bottleneck in quantum dots 174
3.6.10 The quantum confined Stark effect 175
3.6.11 Non-linear effects 176
3.6.12 Coherence and dephasing processes 177
3.7 The characterisation of semiconductor nanostructures 177
3.7.1 Optical and electrical characterisation 178
3.7.2 Structural characterisation 182
3.8 Applications of semiconductor nanostructures 184
3.8.1 Injection lasers 184
3.8.2 Quantum cascade lasers 188
3.8.3 Single-photon sources 190
3.8.4 Biological tagging 191
3.8.5 Optical memories 191
3.8.6 Impact of nanotechnology on conventional electronics 192
3.8.7 Coulomb blockade devices 197
3.8.8 Photonic structures 198
CONTENTS vii
3.9 Summary and outlook 200
Bibliography 201
4 Nanomagnetic materials and devices 203
4.1 Magnetism 203
4.1.1 Magnetostatics 203
4.1.2 Diamagnetism, paramagnetism and ferromagnetism 204
4.1.3 Magnetic anisotropy 206
4.1.4 Domains and domain walls 209
4.1.5 The magnetization process 212
4.2 Nanomagnetic materials 212
4.2.1 Particulate nanomagnets 213
4.2.2 Geometrical nanomagnets 219
4.3 Magnetoresistance 221
4.3.1 Contributions to resistivity in metals 221
4.3.2 Giant magnetoresistance 222
4.3.3 Spin valves 227
4.3.4 Tunnelling magnetoresistance 229
4.4 Probing nanomagnetic materials 231
4.5 Nanomagnetism in technology 233
4.6 The challenges facing nanomagnetism 234
Bibliography 235
5 Processing and properties of inorganic nanomaterials 237
5.1 Introduction 237
5.1.1 Classification 238
5.2 The thermodynamics and kinetics of phase
transformations 238
5.2.1 Thermodynamics 238
5.2.2 Homogeneous nucleation 241
5.2.3 Heterogeneous nucleation 244
5.2.4 Growth 245
5.2.5 Overall transformation rate 246
5.3 Synthesis methods 246
5.3.1 Rapid solidification processing from the liquid
state 247
5.3.2 Devitrification 247
5.3.3 Inert gas condensation 249
5.3.4 Electrodeposition 252
5.3.5 Mechanical methods 254
5.4 Structure 258
5.4.1 Microstructure 259
5.4.2 Grain boundary structure 260
5.4.3 Structural metastability 260
5.5 Microstructural stability 261
5.5.1 Diffusion 261
5.5.2 Grain growth 263
viii CONTENTS
5.5.3 Zener pinning 264
5.5.4 Solute drag 265
5.6 Powder consolidation 266
5.6.1 Compaction of nanopowders 266
5.6.2 Sintering 267
5.6.3 Role of impurities 268
5.6.4 Porosity 269
5.6.5 Non-conventional processing 270
5.7 Mechanical properties 272
5.7.1 Hardness and strength 272
5.7.2 Ductility and toughness 274
5.7.3 Creep and superplasticity 275
5.8 Ferromagnetic properties 276
5.8.1 Fundamental magnetic properties 276
5.8.2 Nanocomposite soft magnetic materials 277
5.8.3 Hard magnetic materials 277
5.9 Catalytic properties 278
5.10 Present and potential applications for nanomaterials 278
5.10.1 Ultraviolet absorbers 278
5.10.2 Magnetic applications 279
5.10.3 Coatings 279
Bibliography 280
6 Electronic and electro-optic molecular materials
and devices 282
6.1 Concepts and materials 282
6.1.1 The solid state: crystals and glasses 282
6.1.2 Chemistry of carbon 283
6.1.3 Examples of organic semiconductors 286
6.1.4 Excitations in organic semiconductors 286
6.1.5 Charge carrier injection and transport 293
6.1.6 Polymers versus small molecules 298
6.1.7 Organic metals? 301
6.2 Applications and devices 302
6.2.1 Synthetic metals 302
6.2.2 Organic field effect transistors 305
6.2.3 Organic light-emitting devices 312
6.2.4 Organic photovoltaics 320
6.3 Carbon nanotubes 323
6.3.1 Structure 323
6.3.2 Synthesis 326
6.3.3 Electronic properties 327
6.3.4 Vibrational properties 329
6.3.5 Mechanical properties 330
6.3.6 Applications 331
Appendix: Reference table of organic semiconductors 334
Bibliography 342
CONTENTS ix
7 Self-assembling nanostructured molecular materials and devices 343
7.1 Introduction 343
7.2 Building blocks 344
7.2.1 Synthetic 344
7.2.2 Biological 345
7.3 Principles of self-assembly 348
7.3.1 Non-covalent interactions 349
7.3.2 Intermolecular packing 350
7.3.3 Biological self-assembly 353
7.3.4 Nanomotors 355
7.4 Self-assembly methods to prepare and pattern nanoparticles 356
7.4.1 Nanoparticles from micellar and vesicular polymerization 356
7.4.2 Functionalized nanoparticles 357
7.4.3 Colloidal nanoparticle crystals 358
7.4.4 Self-organizing inorganic nanoparticles 360
7.4.5 Liquid crystal nanodroplets 362
7.4.6 Bionanoparticles 363
7.4.7 Nano-objects 365
7.5 Templated nanostructures 365
7.5.1 Mesoporous silica 365
7.5.2 Biomineralization 366
7.5.3 Nanostructures templated by block copolymer
self-assembly 368
7.6 Liquid crystal mesophases 368
7.6.1 Micelles and vesicles 368
7.6.2 Lamellar phase 369
7.6.3 ABC triblock structures 370
7.6.4 Smectic and nematic liquid crystals 370
7.6.5 Discotic liquid crystals 373
7.7 Summary and outlook 373
Bibliography 374
8 Macromolecules at interfaces and structured organic films 377
8.1 Macromolecules at interfaces 377
8.2 The principles of interface science 379
8.2.1 Surface and interface energies 379
8.3 The analysis of wet interfaces 381
8.4 Modifying interfaces 382
8.4.1 Adsorption and surfactancy 382
8.4.2 Polymer adsorption 383
8.4.3 The chemistry of grafting 384
8.4.4 Physical properties of grafted polymer layers 387
8.4.5 Nanostructured organic coatings by soft lithography
and other techniques 390
8.5 Making thin organic films 391
8.5.1 Spin-coating of polymers and colloids 392
8.5.2 Making organic multilayers 393
x CONTENTS
8.6 Surface effects on phase separation 397
8.6.1 Polymer blends 397
8.6.2 Block copolymers 400
8.7 Nanopatterning surfaces by self-assembly 403
8.7.1 Patterns produced on heterogeneous substrates 405
8.7.2 Topographically patterned surfaces 406
8.7.3 Patterns produced by thin film dewetting 409
8.8 Practical nanoscale devices exploiting macromolecules at interfaces 411
8.8.1 Molecular and macromolecular electronics 411
8.8.2 Nanofluidics 413
8.8.3 Filtration and sorting 415
Bibliography 418
9 Bionanotechnology 419
9.1 New tools for investigating biological systems 419
9.1.1 Scanning probe microscopy for biomolecular imaging 419
9.1.2 Force measurement in biological systems 423
9.1.3 Miniaturisation and analysis 428
9.1.4 Organisation of biomolecular structure at the nanometre scale 432
9.2 Biomimetic nanotechnology 435
9.2.1 DNA as a nanotechnology building block 435
9.2.2 Molecular motors 439
9.2.3 Artificial photosynthesis 442
9.3 Conclusions 444
Bibliography 445

 

Download free Nanoscale Science and Technology by Robert W. Kelsall, Ian W. Hamley and Mark Geoghegan eBook pdf

    Attachment Lists

    If download doesn't start in application like IDM then press Alt + click on download button to start download
  • Kelsall R_, Hamley I_, Geoghegan M_ (eds_) Nanoscale science and technology.pdf (Size: 7022.42KB) Dowland
Share With Friends :  
Sampatrao Pinjare
29-Mar-2016

Sampatrao Pinjare

download does not work

Shubham Goyal
07-Apr-2016

Shubham Goyal

its working properly, please check again

Ruby Sherin
18-Apr-2016

Ruby Sherin

The ebook is not downloading

bbs kumar
04-Nov-2016

bbs kumar

not downloading

Seema Narwal
09-Feb-2017

Seema Narwal

download doesn't work

Sandesh Jain
18-Feb-2017

Sandesh Jain

unable to download